Alfred P. Sloan Foundation for the award of a Fellowship.
Supplementary Material Available: Tables of atomic coordinates, temperature factors, crystal data and data collection parameters, and bond distances and angles (13 pages); structure factor tables (12 pages). Ordering information is given on any current masthead page.

Kinetics of Intermolecular Oxidative Addition of Primary, Secondary, and Tertiary CH Bonds to $(\mathrm{OC})_{3} \mathbf{M n}^{-}$

Richard N. McDonald* and Michael T. Jones

Department of Chemistry, Kansas State University Manhattan, Kansas 66506
 Received July 21, 1986

Intermolecular oxidative addition of alkane CH bonds to coordinatively unsaturated transition-metal complexes continues as an intriguing area of research in organometallic chemistry ${ }^{1}$ since the first reports by Janowicz and Bergman ${ }^{2}$ and Hoyano and Graham ${ }^{3}$ in 1982. While oxidative addition of primary and secondary alkane CH bonds to several metal complexes are well established, we are not aware of success in oxidatively adding alkane tertiary CH bonds to metal complexes. ${ }^{4}$ We wish to report kinetic evidence that $(\mathrm{OC})_{3} \mathrm{Mn}^{-}$oxidatively adds isobutane by competitive insertion of the metal into the primary and tertiary CH bonds and that the relative rates for the oxidative addition of CH bonds to $(\mathrm{OC})_{3} \mathrm{Mn}^{-}$are primary $\left(1^{\circ}\right)<$ secondary $\left(2^{\circ}\right)$ $<$ tertiary (3°).

Our studies are carried out in a previously described flowing afterglow apparatus. ${ }^{5}$ A mixture of (OC) ${ }_{5} \mathrm{Mn}^{-}(\mathrm{m} / \mathrm{z} \mathrm{195)}$), $(\mathrm{OC})_{4} \mathrm{Mn}^{-}(\mathrm{m} / \mathrm{z} 167)$, and $(\mathrm{OC})_{3} \mathrm{Mn}^{-}(m / z 139)$ is produced by dissociative attachment of energetic electrons with $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ in a fast flow of helium buffer gas ($P_{\mathrm{He}}=0.7$ torr, $\bar{v}=58 \mathrm{~m} / \mathrm{s}$) at $298 \mathrm{~K}^{6}$ Neither (OC) ${ }_{5} \mathrm{Mn}^{-}$or (OC$)_{4} \mathrm{Mn}^{-}$react with the alkanes under these conditions ($k<10^{-13} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$).

Addition of $\mathrm{C}_{2} \mathrm{H}_{6}$ to the flow containing the 14 -electron (O C) ${ }_{3} \mathrm{Mn}^{-}$gave attenuation of the signal for $m / z 139$ and concomitant formation of the signal for the product ion at $\mathrm{m} / \mathrm{z} 167$ with the suggested mechanism in eq $1 .^{7}$ The structure of the $m / z 167$ $(\mathrm{OC})_{3} \mathrm{Mn}^{-}+\mathrm{C}_{2} \mathrm{H}_{6} \rightleftharpoons\left[(\mathrm{OC})_{3} \mathrm{Mn}(\mathrm{H})\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)^{-} \rightleftharpoons\right.$ $m / z 139$

$$
\left.(\mathrm{OC})_{3} \mathrm{Mn}(\mathrm{H})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)^{-}\right] \rightarrow \underset{m / z 167}{(\mathrm{OC})_{3} \mathrm{Mn}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)^{-}}+\mathrm{H}_{2}
$$

ion was characterized as the 16 -electron $\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}$ complex from its further ion-molecule reactions with D_{2} where up to four H / D exchanges were observed (m / z 168-171) and with $\mathrm{H}_{2} \mathrm{~S}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiH}$ which yield the corresponding adducts of $\mathrm{H}-\mathrm{S}^{6}$ and H -Si bond oxidative addition. ${ }^{8,9}$ Statistical correction of the rate

[^0]Table I. Kinetic Data for the Reactions of (OC$)_{3} \mathrm{Mn}^{-}$with Alkanes in This Study

alkane	$\begin{gathered} k_{\text {total }}{ }^{a} \mathrm{~cm}^{3} \\ \text { molecule }{ }^{-1} \mathrm{~s}^{-1} \end{gathered}$	statistically corrected k / CH bond, ${ }^{\text {b }}$ cm^{3} molecule ${ }^{-1} \mathrm{~s}^{-1}$	$k_{\text {rel }}(\mathrm{CH})^{\text {b }}$
$\mathrm{C}_{2} \mathrm{H}_{6}$	$(8.0 \pm 0.1) \times 10^{-12}$	$1.3 \times 10^{-12}\left(1^{\circ}\right)$	1
c- $\mathrm{C}_{5} \mathrm{H}_{10}$	$(9.5 \pm 0.5) \times 10^{-11}$	$9.5 \times 10^{-12}\left(2^{\circ}\right)$	7
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}$	$(3.4 \pm 0.4) \times 10^{-11}$	$1.5 \times 10^{-12}\left(1^{0}\right)$	
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}$	$(2.2 \pm 0.2) \times 10^{-11}$	$2.0 \times 10^{-11}\left(3^{\circ}\right)$	13

${ }^{a}$ The errors are the maximum deviations from the average rate constants determined in at least three kinetic runs for each alkane. ${ }^{b}$ The average $k_{\text {total }}$ is used to calculate the (k / CH bond) values (see text).
constant for reaction 1 yields ($k / 1^{\circ} \mathrm{CH}$ bond) (Table I).
The reaction of (OC) ${ }_{3} \mathrm{Mn}^{-}$with cyclopentane also gave the product ion of dehydrogenation, $m / z 207$ (eq 2). However, the

$$
\begin{gathered}
(\mathrm{OC})_{3} \mathrm{Mn}(\mathrm{H})\left(\eta^{3}-c-\mathrm{C}_{5} \mathrm{H}_{7}\right)^{-} \\
m / z 207
\end{gathered}
$$

absence of reaction of the $m / z 207$ ion with the above neutrals ${ }^{8,9}$ used with the $m / z 167$ ion suggests that the $m / z 207$ ion is an 18 -electron complex negative ion formed by oxidative addition of an allylic CH bond to Mn in the intermediate olefin complex. The rate constant and ($k / 2^{\circ} \mathrm{CH}$ bond) are give in Table I.

The reaction of $(\mathrm{OC})_{3} \mathrm{Mn}^{-}$with $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}$ similarly gave the $m / z 195$ product ion (eq 3). The product ion of $m / z 195$ was

$$
\left.(\mathrm{OC})_{3} \mathrm{Mn}^{-}+\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH} \xrightarrow{(\mathrm{OC})_{3} \mathrm{Mn}(\mathrm{OH})\left[\eta^{3}-\left(2-\mathrm{CH}_{3}\right) \mathrm{C}_{3} \mathrm{H}_{4}\right]^{-}} \underset{m / z \quad 195}{-\mathrm{H}_{2}}[\mathrm{OC})_{3} \mathrm{Mn}^{-}(>=)\right] \rightarrow
$$

also characterized as the 18 -electron hydrido- π-allyl structure in eq 3 based on its lack of reaction with $\mathrm{D}_{2}, \mathrm{H}_{2} \mathrm{~S}$, and $\left(\mathrm{CH}_{3}\right)_{3}-$ $\mathrm{SiH}^{8,9}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}$ contains nine $1^{\circ} \mathrm{CH}$ bonds vs. one $3^{\circ} \mathrm{CH}$ bond for potential intermolecular oxidative addition to $(\mathrm{OC})_{3} \mathrm{Mn}^{-}$. If we assume that ($k / 1^{\circ} \mathrm{CH}$ bond) obtained from the reaction of $(\mathrm{OC})_{3} \mathrm{Mn}^{-}$with $\mathrm{C}_{2} \mathrm{H}_{6}$ applies to the reaction with $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}$ and correct it for the 14% increase in the number of collisions between $(\mathrm{OC})_{3} \mathrm{Mn}^{-}$and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}$ vs. $\mathrm{C}_{2} \mathrm{H}_{6}$ due to the larger polarizability and dipole moment of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH},\left(\mathrm{k} / 1^{\circ} \mathrm{CH}\right.$ bond $)=1.5 \times 10^{-12}$ cm^{3} molecule ${ }^{-1} \mathrm{~s}^{-1}$ in $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}$. Therefore, the kinetic contribution of reaction by the nine $1^{\circ} \mathrm{CH}$ bonds of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}$ is 1.4 $\times 10^{-11} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$ which is 41% of $k_{\text {tota }}$ for this reaction (Table I). The remaining 59% of $k_{\text {total }}, 2.0 \times 10^{-11} \mathrm{~cm}^{3}$ molecule ${ }^{-1}$ s^{-1}, is due to oxidative addition of the $3^{\circ} \mathrm{CH}$ bond in $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}$ based on the above assumption. This analysis is qualitatively supported by the determination of a smaller kinetic deuterium isotope effect for the $1^{\circ} \mathrm{CH}$ bonds in $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}\left(k_{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}}\right)$ $\left.k_{\left(\mathrm{CD}_{3}\right)_{3} \mathrm{CH}}=1.3\right)$ compared to $\mathrm{C}_{2} \mathrm{H}_{6}\left(k_{\mathrm{C}_{2} \mathrm{H}_{6}} / k_{\mathrm{C}_{2} \mathrm{D}_{6}}=2.2\right)$. Assuming that other factors are equal, this result shows a significantly lower contribution of oxidative addition of the $1^{\circ} \mathrm{CH}$ bonds to $k_{\text {total }}$ for the reaction of $(\mathrm{OC})_{3} \mathrm{Mn}^{-}$with $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}$ than with $\mathrm{C}_{2} \mathrm{H}_{6}$.

Since these overall reactions of dehydrogenation of the alkane by $(\mathrm{OC})_{3} \mathrm{Mn}^{-}$involve the two steps of initial intermolecular oxidative addition followed by intramolecular migration of a hydrogen from an alkyl β-carbon to Mn , it was essential to eliminate the contribution of the intramolecular second step to the observed $k_{\text {total }}$'s for these reactions. We believe that the results of the reactions of $(\mathrm{OC})_{3} \mathrm{Mn}^{-}$with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CD}_{2}$ accomplish this end. The reaction of $(\mathrm{OC})_{3} \mathrm{Mn}^{-}$with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}$ yields the product ion of $m / z 181$ characterized as the 18 -electron hydride- π-allyl complex in eq 4 by failure of the $m / z 181$ ion to react with $\mathrm{H}_{2} \mathrm{~S}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiH}^{8,9}$

$$
(\mathrm{OC})_{3} \mathrm{Mn}^{-}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \rightarrow \underset{m / z 181}{(\mathrm{OC})_{3} \mathrm{Mn}(\mathrm{H})\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-}}+\mathrm{H}_{2}
$$

In the reaction of $(\mathrm{OC})_{3} \mathrm{Mn}^{-}$with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CD}_{2}$, complex 1 will be produced as the intermediate irrespective of initial $1^{\circ} \mathrm{CH}$ or

$$
(\mathrm{OC})_{3} \mathrm{Mn}(\mathrm{H})(\mathrm{D})\left(\eta^{2}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{D}\right)^{-}
$$

1

$2^{\circ} \mathrm{CD}$ bond oxidative addition followed by β - D or β - H migration, respectively. If the intramolecular β-migrations and their microscopic reverse rearrangements are slow compared to the fast unimolecular fragmentation of 1 , the sole product will be the m / z 182 ion formed by reductive elimination of HD from 1. The results of the reaction with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CD}_{2}$ in eq 5 with formation of about

equal amounts of the $m / z 182$ and 183 ions clearly show that H/D scrambling in $\mathbf{1}$ is extensive, but not statistical, during the brief lifetime of the excited ion. This result means that intramolecular rearrangements of H and D between Mn and the β-carbons are fast and reversible and will not contribute significantly to the observed kinetics.
These kinetic results establish the reactivity order for oxidative addition of aliphatic CH bonds to $(\mathrm{OC})_{3} \mathrm{Mn}^{-}$as $1^{\circ}<2^{\circ}<3^{\circ}$, although the quantitative values given may be in error. The absence of observed oxidative addition of $3^{\circ} \mathrm{CH}$ bonds in the condensed phase ${ }^{4}$ is probably due to the steric bulk of the tran-sition-metal complex used rather than a significant difference in the intrinsic reactivities of $1^{\circ}, 2^{\circ}$, and $3^{\circ} \mathrm{CH}$ bonds in the two phases.
Acknowledgment. We thank the National Science Foundation for support of this research and Professors David Macomber and Eric Maatta for helpful discussions.

Chirality Transmission via a 6-Endo
 Free-Radical-Mediated Cyclization Process. Regio- and Stereocontrolled Synthesis of the 22-Hydroxylated Steroid Side Chains

Masato Koreeda* and Irene A. George ${ }^{\dagger}$

Department of Chemistry, The University of Michigan Ann Arbor, Michigan 48109

Received August 28, 1986
Primarily through the extensive efforts of Stork, ${ }^{1}$ Hart, ${ }^{2}$ and Curran, ${ }^{3} \mathrm{C}-\mathrm{C}$ bond formation via free-radical-mediated cyclization reactions now has a firmly established role in synthetic organic chemistry as a highly versatile and often indispensable method

[^1]
coupling constants (Hz)
$J_{15,16}=3.5 \quad J_{151,16}=9.3$
$J_{16,17}=9.3 \quad J_{17.20}=10.5$
$J_{20.21}=6.4 \quad J_{20.22 x}=14.5$
$s_{20,22 \mathrm{~F}}=4.0 \quad \mathrm{~J}_{220,22 \mathrm{E}}=14.4$

coupling constants (H_{2})
$J_{15,16}=3.7 J_{15}{ }^{\circ}, 16=7.7$
$J_{16,17}=6.4 \quad J_{20,21}=7.1$
$J_{16,17}=6.4 \quad J_{20,21}=7.1$
$J_{20,22 a}=3.8 \quad J_{20,22 k}=14.7$
$\mathrm{J}_{22 \mathrm{n}, 22_{\mathrm{F}}}=14.5$

Figure 1. NMR data in CDCl_{3} (360 MHz); chemical shifts in $\delta(\mathrm{ppm})$.
Scheme I

of skeleton construction. ${ }^{4}$ The large volume of data delineating radical reactivity compiled over the past several decades un-

[^2]
[^0]: (1) Crabtree, R. H. Chem. Rev. 1985, 85, 245-269.
 (2) Janowicz, A. H.; Bergman, R. G. J. Am. Chem. Soc. 1982, 104, 352354; 1983, 105, 3929-3939.
 (3) Hoyano, J. K.; Graham, W. A. G. J. Am. Chem. Soc. 1982, 104, 3723-3725.
 (4) Janowicz, A. H.; Periana, R. A.; Buchanan, J. M.; Kovac, C. A.; Stryker, J. M.; Wax, M. J.; Bergman, R. G. Pure Appl. Chem. 1984, 56, 13-23.
 (5) (a) McDonald, R. N.; Chowdhury, A. K. J. Am. Chem. Soc. 1985, 107, 4123-4128. (b) McDonald, R. N.; Chowdhury, A. K.; Setser, D. W. Ibid. 1980, 102, 6491-6498.
 (6) McDonald, R. N.; Chowdhury, A. K.; Jones, M. T. J. Am. Chem. Soc. 1986, 108, 3105-3107.
 (7) For some general references for the steps in eq 1 , see ref 1 and: Parshall, G. W. Homogeneous Catalysis; John Wiley: New York, 1980.
 (8) Generally, 15 - and 16 -electron metal complex negative ions oxidatively add $\mathrm{H}_{2} \mathrm{~S}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiH}$ forming termolecular adducts with apparent bimolecular rate constants of 10^{-10} to $10^{-11} \mathrm{~cm}^{3}$ molecule $e^{-1} \mathrm{~s}^{-1}$. If the coordinatively unsaturated complex contains a hydride ligand, H_{2} is usually reductively eliminated in the bimolecular reaction.
 (9) The fast bimolecular reactions of the product ions of $m / z 167,207$, 195 , and 181 with SO_{2} yield $(\mathrm{OC})_{3} \mathrm{Mn}\left(\mathrm{SO}_{2}\right)^{-}$with loss of $\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{C}_{4} \mathrm{H}_{8}$, and $\mathrm{C}_{3} \mathrm{H}_{6}$, respectively.

[^1]: ${ }^{\dagger}$ Interdepartmental Medicinal Chemistry Program Participant.
 (1) (a) Stork, G.; Baine, N. H. J. Am. Chem. Soc. 1982, 104, 2321. (b) Stork, G.; Mook, R., Jr. Ibid. 1983, I05, 3720. (c) Stork, G.; Mook, R., Jr.; Biller, S. A.; Rychnovsky, S. D. Ibid. 1983, 105, 3741. (d) Stork, G.; Sher, P. M. Ibid. 1983, 105, 6765. (e) Stork, G. In Selectivity-a Goal for Synthetic Efficiency; Bartman, W., Trost, B. M., Eds.; Verlag Chemie: Basel, 1984; pp 281-298. (f) Stork, G.; Kahn, M. J. Am. Chem. Soc. 1985, 107 , 500. (g) Stork, G.; Baine, N. H. Tetrahedron Lett. 1985, 26, 5927. (h) Stork, G.; Sher, P. M. J. Am. Chem. Soc. 1986, 108, 303. (i) Stork, G.; Mook, R., Jr. Tetrahedron Lett. 1986, 27, 4529.
 (2) (a) Hart, D. J.; Tsai, Y.-M. J. Am. Chem. Soc. 1982, 104, 1430. (b) Choi, J.-K.; Hart, D. J.; Tsai, Y.-M. Tetrahedron Lett. 1982, 23, 4765 . (c) Chuang, C.-P.; Hart, D. J. J. Org. Chem. 1983, 48, 1782. (d) Burnett, D. A.; Choi, J.-K.; Hart, D. J.; Tsai, Y.-M. J. Am. Chem. Soc. 1984, 106, 8204. (e) Hart, D. J.; Tsai, Y.-M. Ibid. 1984, 106, 8209. (f) Hart, D. J.; Huang, H.-C. Tetrahedron Lett. 1985, 26, 3749. (g) Choi, J.-K.; Hart, D. J. Tetrahedron 1985, 41, 3959. (h) Chenera, B.; Chuang, C.-P.; Hart, D. J.; Hsu, L.-Y. J. Org. Chem. 1985, 50, 5409.
 (3) (a) Curran, D. P.; Rakiewicz, D. M. J. Am. Chem. Soc. 1985, 107, 1448; (b) Tetrahedron 1985, 41, 3943. (c) Curran, D. P.; Chen, M.-H. Tetrahedron Lett. 1985, 26, 4991. (d) Curran, D. P.; Kuo, S.-C. J. Am Chem. Soc. 1986, 108, 1106. (e) Curran, D. P.; Chen, M.-H.; Kim, D. Ibid. 1986, $108,2489$.

[^2]: (4) Reviews: (a) Hart, D. J. Science (Washington, D.C.) 1984, 223, 883. (b) Giese, B. Angew. Chem., Int. Ed. Engl. 1985, 24, 553. For other recent leading references on intramolecular cyclizations of carbon-centered radicals, see: (c) Bakuzis, P.; Campos, O. O. S.; Bakuzis, M. L. F. J. Org. Chem. 1976, 41, 3261 . (d) Büchi, G.; Wüest, H. Ibid. 1979, 44, 546. (e) Danishefsky, S.; Chackalamannil, S.; Uang, B.-J. Ibid. 1982, 47, 2231. (f) Burke, S. D.; Fobare, W. F.; Armistead, D. M. Ibid. 1982, 47, 3348 . (g) Ueno, Y.; Chino, K.; Okawara, M. Tetrahedron Lett. 1982, 23, 2575. (h) Ueno, Y.; Chino, K.; Watanabe, M.; Moriya, O.; Okawara, M. J. Am. Chem. Soc. 1982, 104, 5564. (i) Okabe, M.; Tada, M. J. Org. Chem. 1982, 47, 5382. (j) Marinovic, N. N.; Ramanathan, H. Tetrahedron Lett. 1983, 24, 1871. (k) Corey, E. J.; Pyne, S. G. Ibid. 1983, 24, 2821. (1) Clive, D. L. J.; Beaulieu, P. L. J. Chem. Soc., Chem. Commun. 1983, 307. (m) Beckwith, A. L. J.; O'Shea, D. M.; Roberts, D. H. Ibid. 1983, 1445. (n) Bachi, M. D.; Frolow, F.; Hoornaert, C. J. Org. Chem. 1983, 48, 1841. (0) Clive, D. L. J.; Beaulieu, P. L.; Set, L. Ibid. 1984, 49, 1313. (p) Nishiyama, H.; Kitajima, T.; Matsumoto, M.; Itoh, K. Ibid. 1984, 49, 2298. (q) Molander, G. A.; Etter, J. B. Tetrahedron Lett. 1984, 25, 3281. (r) Ladlow, M.; Pattenden, G. Ibid. 1984, 25, 4317. (s) Corey, E. J.; Kang, M.-C. J. Am. Chem. Soc. 1984, 106, 5384. (t) Scheffold, R. Chimia 1985, 39, 203. (u) Wilcox, C. S.; Thomasco, L. M. J. Org. Chem. 1985, 50, 546. (v) Padwa, A.; Nimmesgern, H.; Wong, G. S. K. Tetrahedron Lett. 1985, 26, 957. (w) Keck, G. E.; Enholm, E. J. Tetrahedron Lett. 1985, 26, 3311. (x) Beckwith, A. L. J.; Roberts, D. H.; Schiesser, C. H.; Wallner, A. Ibid. 1985, 26, 3349. (y) Ernst, A. B.; Fristad, W. E. Ibid. 1985, 26, 3761. (2) Snider, B. B.; Mohan, R.; Kates, S. A. J. Org. Chem. 1985, 50, 3659. (aa) Padwa, A.; Nimmesgern, H.; Wong, G. S. K. Ibid. 1985, 50, 5620 . (bb) Angoh, A. G.; Clive, D. L. J. J. Chem. Soc., Chem. Commun. 1985, $941,980$. (cc) Shankaran, K.; Sloan, C. P.; Snieckus, V. Tetrahedron Lett. 1985, 26, 6001 . (dd) Leonard, W. R.; Livinghouse, T. Ibid. 1985, 26, 6431. (ee) Nakai, E.; Kitahara, E.; Sayo, N.; Ueno, Y.; Nakai, T. Chem. Lett. 1985, 1725. (ff) Jones, K.; Thompson, M.; Wright, C. J. Chem. Soc., Chem. Commun. 1986, 115. (gg) Mohammed, A. Y.; Clive, D. L. J. Ibid. 1986, 588. (hh) Winkler, J. D.; Sridar, V. J. Am. Chem. Soc. 1986, 108, 1708. (ii) Tsang, R.; Fra-ser-Reid, B. Ibid. 1986, 108, 2116 . (ij) Porter, N. A.; Magnin, D. R.; Wright, B. T. Ibid. 1986, 108, 2787. (kk) Molander, G. A.; Etter, J. B. J. Org. Chem. 1986, 51, 1778. (11) Meijs, G. F.; Beckwith, A. L. J. J. Am. Chem. Soc. 1986, 108, 5890. (mm) Beckwith, A. L. J.; Roberts, D. H. Ibid. 1986, 108, 5893. (nn) Beckwith, A. L. J.; O'Shea, D. M. Tetrahedron Lett. 1986, 27, 4525. For intermolecular versions, see ref 4 b and: (∞) Giese, B.; Heuck, K. Chem. Ber. 1979, 112, 3759. (pp) Giese, B.; Horler, H.; Zwick, W. Tetrahedron Lett. 1982, 23, 931 . (qq) Kozikowski, A. P.; Nieduzak, T. R.; Scripko, J. Organometallics 1982, 1, 675. (rr) Adlington, R. M.; Baldwin, J. E.; Basak, A.; Kozyrod, R. P. J. Chem. Soc., Chem. Commun. 1983, 944. (ss) Baldwin, J. E.; Kelly, D. R.; Ziegler, C. B. Ibid. 1984, 133. (tt) Baldwin, J. E.; Adlington, R. M.; Basak, A. Ibid. 1984, 1284. (uu) Giese, B.; Gonzălez-Gômez, J. A.; Witzel, T. Angew. Chem., Int. Ed. Engl. 1984, 23, 69. (vv) Keck, G. E.; Kachensky, D. F.; Enholm, E. J. J. Org. Chem. 1984, 49, 1462. (ww) Giese, B.; Gröninger, K. Tetrahedron Lett. 1984, 25, 2743. (xx) Kraus, G. A.; Landgrebe, K. Ibid. 1984, 25, 3939. (yy) Fristad, W. E.; Peterson, J. R. J. Org. Chem. 1985, 50, 10. (zz) Keck, G. E.; Kachensky, D. F.; Enholm, E. J. Ibid. 1985, 50, 4317. (aaa) Keck, G. E.; Byers, J. H. Ibid. 1985, 50 , 5442. (bbb) Keck, G. E.; Enholm, E. J.; Wiley, M. R. Tetrahedron 1985, 41, 4079. (ccc) Giese, B.; Witzel, T. Angew. Chem., Int. Ed. Engl. 1986, 25, 450. (ddd) Baldwin, J. E.; Adlington, R. M.; Birch, D. J.; Crawford, J. A.; Sweeney, J. B. J. Chem. Soc., Chem. Commun. 1986, 1339. (eee) Gerth, D. B.; Giese, B. J. Org. Chem. 1986, 5I, 3726.

